2021-01-14
2867
#node
Ukpai Ugochi
32132
Jan 14, 2021 ⋅ 10 min read

Node.js crypto module: A tutorial

Ukpai Ugochi I'm a full-stack JavaScript developer on the MEVN stack. I love to share knowledge about my transition from marine engineering to software development to encourage people who love software development and don't know where to begin. I also contribute to OSS in my free time.

Recent posts:

Secure your AI-generated projects with these security practices

Secure AI-generated code with proactive prompting, automated guardrails, and contextual auditing. A practical playbook for safe AI-assisted development.

Ikeh Akinyemi
Sep 16, 2025 ⋅ 5 min read

Let’s kill vibe coding and bring back prompt engineering

Explore the vibe coding hype cycle, the risks of casual “vibe-driven” development, and why prompt engineering deserves a comeback as a critical skill for building better, more reliable AI applications.

Oscar Jite-Orimiono
Sep 16, 2025 ⋅ 11 min read
Frontend Devs Aren't Lazy, They're Burnt Out

Frontend developers are burned out, not lazy

Shipping modern frontends is harder than it looks. Learn the hidden taxes of today’s stacks and practical ways to reduce churn and avoid burnout.

Shalitha Suranga
Sep 15, 2025 ⋅ 4 min read

Can native web APIs replace custom components in 2025?

Learn how native web APIs such as dialog, details, and Popover bring accessibility, performance, and simplicity without custom components.

Daniel Schwarz
Sep 12, 2025 ⋅ 9 min read
View all posts

5 Replies to "Node.js crypto module: A tutorial"

  1. Would suggest changing your aes example to use aes-256 and the password example mention why a higher iteration count is important, and may want to switch to the async methods, especially for higher iterations and mention countermeasures as this can be a point for DDoS depending on configuration and implementation details..

  2. Hello!
    Thank you for the kind feedback. Although larger key sizes exist mostly to satisfy some US military regulations which require several distinct security levels, the larger key sizes imply some CPU overhead (+20% for a 192-bit key, +40% for a 256-bit key. This is why most applications use 192-bit key. Also, the reason why most people will use a higher iteration is to make it difficult for attackers to easily decipher passwords. Sure! It’ll be a better idea to apply asynchronous programming for higher iteration, otherwise synchronous method as applied here presents no delay.

    Do well to reach out if you have further questions or suggestions. Thank you!

  3. Hi Ukpai, I have not finished reading the full article, but isn’t it better, when authenticating a user, to encrypt the password they supply and compare that result with the stored (encrypted) value? Tebb

  4. Hello Tebb!

    This is what I tried to implement in the login method.
    password: crypto.pbkdf2Sync(req.body.password, salt,
    1000, 64, `sha512`).toString(`hex`)

    Crypto doesn’t have a compare method like bcrypt. This is why developers opt for bcrypt whenever it involves ciphering login details

Leave a Reply