2024-10-21
1777
#typescript
Simohamed Marhraoui
70024
Oct 21, 2024 ⋅ 6 min read

Understanding infer in TypeScript

Simohamed Marhraoui Vue and React developer | Linux enthusiast | Interested in FOSS

Recent posts:

how API client automation can save you hours in development

How API client automation can save you hours in development

Learn how OpenAPI can automate API client generation to save time, reduce bugs, and streamline how your frontend app talks to backend APIs.

Lewis Cianci
Jul 1, 2025 ⋅ 7 min read
Interface Segregation Principle

SOLID series: Understanding the Interface Segregation Principle (ISP)

Discover how the Interface Segregation Principle (ISP) keeps your code lean, modular, and maintainable using real-world analogies and practical examples.

Oyinkansola Awosan
Jun 30, 2025 ⋅ 7 min read
​​How HTML’s Selectedcontent Element Improves Dropdowns

​​How HTML’s <selectedcontent> element improves dropdowns

is an experimental HTML element that gives developers control over how a selected option is displayed, using just HTML and CSS.

Temitope Oyedele
Jun 27, 2025 ⋅ 6 min read
advanced caching in Node.js with Valkey

How to get faster data access in Node.js with Valkey

Learn how to implement an advanced caching layer in a Node.js app using Valkey, a high-performance, Redis-compatible in-memory datastore.

Muhammed Ali
Jun 27, 2025 ⋅ 7 min read
View all posts

8 Replies to "Understanding <code>infer</code> in TypeScript"

  1. A literal [ ‘hello’ , ‘world’ ] in Typescript code is by default typed as a mutable array not a readonly tuple, but you can resolve this with `as const`.

    Although it was a two-arg string array when you created it, Typescript models it as a mutable array, because you could push(), pop() and so on. One way to defeat this type-widening, alex should be declared `as const` which prevents it from being considered mutable and makes push(), pop() a compiler error so it can never vary from being a two-value tuple.

    I really liked the learning associated with infer, (for when you can’t edit the function), but for the case where you can edit the function, I think a better fix is for the person type to be asserted readonly in the first place and to use `as const` when composing person objects, which allows the original code to compile…

    function describePerson(person: Readonly<{
    name: string;
    age: number;
    hobbies: Readonly; // tuple
    }>) {
    return `${person.name} is ${person.age} years old and love ${person.hobbies.join(” and “)}.`;
    }

    const alex = {
    name: ‘Alex’,
    age: 20,
    hobbies: [‘walking’, ‘cooking’] // type is [string, string]
    } as const;

    describePerson(alex)

    Getting this right means that you haven’t type-widened the alex object, to turn e.g. hobbies into [string,string] by declaring it as a Person. When you use `as const` the hobbies property can still be inferred by the editor as being the narrower [‘walking’,’cooking’]. This has saved me a million times where compiler and editor awareness of the values is needed to guard sensitive logic. For example, some other type might be {hobby:’cooking’|’walking’, favouriteOutdoorMeals:string[]} and the compiler can know that both values of alex.hobbies fulfil the hobby value. This is not possible after type-widening them to string.

    See also https://learntypescript.dev/10/l4-readonly-function-parameters and https://github.com/typescript-eslint/typescript-eslint/blob/master/packages/eslint-plugin/docs/rules/prefer-readonly-parameter-types.md

    You can see the above approach in the playground https://www.typescriptlang.org/play?#code/GYVwdgxgLglg9mABAEwKYGcICcYCNUAKqW6CAFAA7GlgBciASqgIbIIA2AngDwDeAsAChEiMMwC2qeuig4wAcwDcQkc3lTRIcfizLhiABZxcuGBnpNWHHgG0Zc+QBpE9mAoC6APkWIA9L8QoEAp2VCEAX08ASkQBfSxUIKwkAAMAEl4qEgQAOjFJcMQYdEQMrJoctVRCzhYSRDh2ZERmMGb2OAA3VFLM6lyjEzN0HIArODcyACIWtpEpqPCclL1woSEIBBkW0IAPRABeWJVRCQ0AcgBBPfPHE6r6ACYABjv9QdNzRBtzgHdmdgAazc8luiHOmzgwIU53cfgCUE4VCKJTsshBzlcHgiLRKmzAMj0QjQmBw+CI2TAZABqF2USAA

  2. Thank you so much for this great article. I didn’t get a sense of “infer” from official TS guide. But here it described perfectly

  3. This is so COOL! This article let me understand the concept of ‘infer’. Thanks a lot, Marhraoui 🙂

  4. For you who need to infer Function return Promise,

    type PromiseReturnType = T extends Promise ? Return : T
    type FunctionReturnType = T extends (…args: any[]) => infer R
    ? PromiseReturnType
    : any

  5. “`
    function getFirst(arr: T): T extends [infer U, …unknown[]] ? U : never {
    return arr[0];
    }

    const firstNumber = getFirst([1, 2, 3]); // firstNumber is inferred as number
    const firstString = getFirst([‘a’, ‘b’, ‘c’]); // firstString is inferred as string
    “`
    This example is not working in TS Playground. Both variables get `never`.

    1. Hey Serg! Thanks for letting us know. We contacted the writer, and he updated the code snippet and its explanation.

Leave a Reply