2020-09-01
1669
#node
Wisdom Ekpot
24176
Sep 1, 2020 ⋅ 5 min read

Building a password hasher in Node.js

Wisdom Ekpot A student of Ibom Metropolitan Polytechnic studying computer engineering, Wisdom has been writing JavaScript for two years, focusing on Vue.js, Angular, and Express.js.

Recent posts:

How to build agentic AI when your data can’t leave the network

Large hosted LLMs aren’t always an option. Learn how to build agentic AI with small, local models that preserve privacy and scale.

Rosario De Chiara
Dec 23, 2025 ⋅ 5 min read
frontend wrapped top stories of 2025

Frontend Wrapped 2025: The 10 storylines that defined the year

What storylines defined 2025 in frontend development? We power rank them all, from AI advancements to supply chain attacks and framework breakthroughs.

Chizaram Ken
Dec 23, 2025 ⋅ 6 min read
Getting Started With NativeWind: Tailwind For React Native

Getting started with NativeWind: Tailwind for React Native

Learn how to style React Native apps with Tailwind using NativeWind v4.

Chinwike Maduabuchi
Dec 22, 2025 ⋅ 14 min read
The 10 Best React Native Component Libraries You Should Know

The 10 best React Native UI libraries of 2026

A practical guide to the best React Native UI libraries in 2026, with comparisons across performance, theming, accessibility, and Expo compatibility.

Aman Mittal
Dec 22, 2025 ⋅ 12 min read
View all posts

4 Replies to "Building a password hasher in Node.js"

  1. Copied from: https://www.echojs.com/comment/37385/1

    Okay… while this is kind of correct, I would empatically NOT follow this advice.

    First, sha512 is *not* sufficient for a hash, there are specific algorithms that will use sha256/512 as an underlying hash with thousands of iterations in order to create an appropriate hash.

    Second, the “rounds” for a salt is a total abuse of the term. The “rounds” in a password hash has to do with the number of cycles to perform on a passphrase hash.

    Third, you don’t need to convert to a hex string when passing the salt to the hashing algorithm, it can stay an ArrayBuffer/Buffer.

    Fourth, the length of the salt should match the bit length of the underlying hashing algorithm to ensure than at least a full working buffer goes into the algorithm to offset for short-ish passphrases.

    Here’s a better example to work from:

    https://gist.github.com/tracker1/87bbebbf235e697588fc9d9b8ca4f0a2

    Though, you may want to use something other than pbkdf2, the example above was using it because of legal requirements and that the algorithm is supported by node in the box.

  2. It is quite obvious that when it has to do with hashing in Node.js, it is recommended to use packages like bcrypt or Argon2. The article was basically to explain how bcrypt works and how to build something similar. It is stated in the conclusion that this has some flaws and wouldn’t be recommended for production.

  3. He was just explaining how salting works in Node.js crypto, inasmuch he stated that this isn’t safe to do in production.
    Also, how is the ’rounds’ a waste of term? Could you explain further?
    Converting to a hex string is just by choice.

  4. Thank you for bringing up some of the flaws with this! Adding onto the list of issues, the hash comparison here is not time safe and is vulnerable to a timing-based side-channel information leak.

    Also, NIST recommends at least 128-bits for a salt.

    Something like Argon2 would be ideal for passwords. If you have to stay within the scope of the SHA-family, then use a keccak construction like SHA3-512 (supported by NodeJS 10+), and use a minimum of 1,000 rounds/iterations, but ideally, go with something higher. And as mentioned above, use PBKDF2.

Leave a Reply

Hey there, want to help make our blog better?

Join LogRocket’s Content Advisory Board. You’ll help inform the type of content we create and get access to exclusive meetups, social accreditation, and swag.

Sign up now