

LOGROCKET.COM

Table of Contents

3

4

28

43

Introduction

Death by a Thousand Cuts:
A Checklist for Eliminating Common
React Performance Issues

Five Common Practices That
You Can Stop Doing in React

Modern Component Reusability:
Render Props in React

Death by a Thousand Cuts:
A Checklist for Eliminating Common
React Performance Issues

By Ohans Emmanuel • FE Engineer

5

LOGROCKET.COM

5

Have you ever wondered how to make
your React applications faster?

Yes?

How about having a checklist for eliminating common
React performance issues?

Well, you are in the right place.

In this article, I’ll walk you through a pragmatic step-by-step
guide to eliminating common react performance issues.

First, I’ll show you the problems, and then provide solutions
to them. In doing this, you’ll be able to carry over the same
concepts to your real-world projects. The goal of this article is
not to be a lengthy essay, rather, I’ll discuss quick tips you can
start using in your applications today. Let’s get started!

6

The Sample Project
To make this article as pragmatic as possible, I’ll walk you through
various use cases while working on a single React application.

I call this app Cardie.

Here’s the Github repo if you want to follow along.

Cardie is a simple application. All it does is display the profile
information of a user. Commonly known as a user profile card.

It also includes the added functionality of being able to change
the user’s profession with a button click.

LOGROCKET.COM

https://github.com/ohansemmanuel/Cardie-performace

7

Upon clicking the button at the bottom of the app, the user’s
profession is changed.

While you may be quick to laugh this off as a simple application, and
nowhere near a real-world app, you may be surprised to know that
the knowledge gained from hunting down performance issues with
this example application applies to whatever real-world app you
build.

So, stay calm and enjoy the article.

Here comes the checklist!

LOGROCKET.COM

8

1. Identify wasted renders
Identifying wasted renders in your react applications is
the perfect start to identifying most performance issues.

There are a couple different ways to approach this, but the
simplest method is to toggle on the “highlight updates” option
in the React dev tools.

While interacting with the app, updates are highlighted
on the screen with a green flash.

The green flash shows the components in the app that are
re-rendered by React under the hood.

Note the green flash around the user card

LOGROCKET.COM

9

With Cardie, upon changing the user’s profession, it appears that
the entire parent component App is re-rendered.

A more ideal highlighted update should look like this:

In more complex applications, the impact of a wasted render may be
huge! The re-rendered component may be large enough to promote
performance concerns.

Having seen the problem, are there any solutions to this?

Note how the highlighted update is contained within the small updated region.

LOGROCKET.COM

2. Extract frequently updated regions
into isolated components
Once you’ve visually noted wasted renders in your application, a
good place to start is to attempt to break up your component tree to
support regions updated frequently.

Let me show you what I mean.

In Cardie, the App component is connected to the redux store via the
connect function from react-redux. From the store, it receives the
props: name, location, likes and description.

The description props define the current profession of the user.

LOGROCKET.COM

11

Essentially, what’s happening is that whenever the user profession
is changed by clicking the button, the description prop is changed.
This change in props then causes the App component to be
re-rendered entirely.

If you remember from React 101, whenever the props or state
of a component changes, a re-render is triggered.

Instead of allowing the App component to re-render pointlessly,
what if we localized the elements being updated to a specific
React component?

For example, we could create a new component called Profession
which renders its own DOM elements.

A React component renders a tree of elements. These elements are defined via props and state.
 If the props or state values changes, the tree of elements is re-rendered. This results in a new tree.

LOGROCKET.COM

In this case, the Profession component will render the description of
the user’s profession e.g “I am a Coder”.

The component tree would now look like this:

1. The <App/> component renders the elements it renders plus the <Profession/> component.
2. The profession will now be retrieved directly from the redux store by the <Profession/> component.

LOGROCKET.COM

13

What’s also important to note here is that instead of letting <App/>
worry about the profession prop, that’ll now be a concern for the
<Profession/> component.

Whether you use redux or not, the point here is that App no longer
has to be re-rendered owing to changes from the profession prop.
Instead, the <Profession/> component will be.

Upon completing this refactor, we have an ideal update highlighted
as seen below:

To view the code change, please see the isolated-component branch
from the repo.

Note how the highlighted updates is contained within <Profession />

LOGROCKET.COM

https://github.com/ohansemmanuel/Cardie-performace/tree/isolated-component

14

3. Use pure components when appropriate
Any React resource talking about performance will very likely
mention pure components. However, how do you know when to
properly use pure components?

Well, it is true that you could make every component a pure
component, but remember there’s a reason why that isn’t the case
out of the box. Hence the shouldComponentUpdate function.

The premise of a pure component is that the component ONLY
re-renders if the props are different from the previous props and state
An easy way to implement a pure component is to use
React.PureComponent as opposed to the default React.Component.

To illustrate this specific use case in Cardie, let’s break down
the render elements of the Profession component into smaller
components.

So, this was the content of Profession before now:

LOGROCKET.COM

https://reactjs.org/docs/react-api.html#reactpurecomponent

Here’s what we’ll change it to:

Now, the Description component renders 4 children components.

Note that the Description component takes in a profession prop.
However, it passes on this prop to the Profession component.
Technically, none of the other 3 components care about this
profession prop.

The contents of these new components are super simple.
For example, the <I/> component just returns a span element
with an “I” text: I

LOGROCKET.COM

16

If the application runs, the result is just the same. The app works.

What’s interesting is that upon a change to the description prop,
every child component of Profession is also re-rendered.

I added a few logs in the render methods of each child component—
and as you can see they were indeed all re-rendered.

LOGROCKET.COM

17

You may also view the highlighted updates using the react dev tools.

This behavior is expected. Whenever a component has either props or
state changed, the tree of elements it renders is recomputed.
This is synonymous to a re-render.

In this particular example, you’ll agree with me that if really makes no
sense for <I/>, <Am/> and <A/> child components to be re-rendered.
Yes, the props in the parent element, <Description/> changed, but
if this were a sufficiently large application, this behaviour may pose
some performance threats.

What if we made these child components pure components?

Consider the <I/> component:

LOGROCKET.COM

18

By implication, React is informed under the hood so that if the prop
values for these child components aren’t changed, there’s no need to
re-render them.

Yes, do not re-render them even when the parent element has a
change in its props!

Upon inspecting the highlighted updates after the refactor, you can
see that the child components are no longer re-rendered. Just the
Profession component whose prop actually changes is re-rendered.

In a larger application, you may find immense performance
optimizations by just making certain components pure components.

To view the code change, please see the pure-component branch
from the repo.

LOGROCKET.COM

https://github.com/ohansemmanuel/Cardie-performace/tree/pure-components

19

4. Avoid passing new objects as props
Remember again that whenever the props for a component changes,
a re-render happens. What if the props for your component didn’t
change but React thinks it did change?

Well, there’ll also be a re-render!

But isn’t that weird?

This seemingly weird behavior happens because of how Javascript
works & how React handles its comparison between old and new
prop values.

Let me show you an example.

Here’s the content for the Description component:

LOGROCKET.COM

Now, we will refactor the I component to take in a certain i prop. This
will be an object of the form:

Whatever value property is present in i will be set as the value in the
I component.

In the Description component, the i prop is created and passed in as
shown below:

LOGROCKET.COM

21

Bear with me while I explain this.

This is perfectly correct code, and it works fine — but there is one
problem.

Even though I is a pure component, now it re-renders whenever the
profession of the user is changed!

But why?

As soon as the Description component receives the new props, the
render function is called to create its element tree.

On Clicking the button, the logs show that both <I/> and <Profession/> are re-rendered. Remember there’s been no actual
props change in <I/>. Why the re-render?

LOGROCKET.COM

22

Upon invoking the render function it creates a new i constant:

When React gets to evaluate the line, <I i={i} />, it sees the props i
as a different prop, a new object — therefore the re-render.

If you remember from React 101, React does a shallow comparison
between the previous and next props. Scalar values such as strings
and numbers are compared by value. Objects are compared
by reference.

By implication, even though the constant i has the same value
across re-renders, the reference is not the same. The position
in memory isn’t.

It’s a newly created object with every single render call.
For this reason, the prop value passed to <I/> is regarded as “new”,
consequently a re-render. In bigger applications, this can lead to a
wasted render, and potential performance pitfalls.

Avoid this.

LOGROCKET.COM

23

This applies to every prop including event handlers.
If you can avoid it, you shouldn’t do this:

You’re creating a new function object every time within render.
Better do this:

Got that?

LOGROCKET.COM

24

In the same vein, we may refactor the prop sent
to <I /> as shown below:

Now, the reference is always the same, this.i. A new object isn’t
created at render time.

To view the code change, please see the new-objects branch from
the repo.

LOGROCKET.COM

https://github.com/ohansemmanuel/Cardie-performace/tree/new-objects

25

5. Use the production build
When deploying to production, always use the production build.
This is a very simple, but great practice.

If you have bootstrapped your application with create-react-app , to
run the production build, use the command: npm run build.

This will yield bundle optimized files for production.

The “development build” warning you get with the react devtools in development.

LOGROCKET.COM

6. Employ code splitting

When you bundle your application, you likely have the entire
application bundled in one large chunk.

The problem with this is that as your app grows, so does the bundle.

Code splitting advocates that instead of sending this large chunk of
code to the user at once, you may dynamically send chunks to the
user when they need it.

A common example is with route based code splitting. In this method,
the code is split into chunks based on the routes in the application.

Once the user visits the site, they are sent a large chunk of code for the entire app.

The /home route gets a small chunk of code, so does the /about route.

LOGROCKET.COM

27

Another approach is component based code splitting. In this method,
if a component is currently not displayed to the user, it’s code may be
delayed from being sent to the user.

Whichever method you stick to, it is important to understand the
trade-offs and not degrade the user experience of your application.
Code splitting is great, and it can improve your application’s
performance.

I have taken a conceptual approach to explain code splitting. If you
want more technical grounds, please have a look at the official React
docs. They do a decent job at explaining the concept technically.

Now you’ve got a decent checklist for tracking and fixing common
performance issues in react apps. Go build some fast apps!

LOGROCKET.COM

https://reactjs.org/docs/getting-started.html

Five Common Practices That You
Can Stop Doing in React

By Manjunath M • Founder of Storylens.com

29

LOGROCKET.COM

At this point, it’s tough to argue that React is
one of the most loved libraries on the planet.

There is a tremendous amount of interest in React and new
developers are swayed into the platform because of its UI-first
approach. And while both the library and the entire React ecosystem
have matured over the years, there are certain instances where you
find yourself asking “what’s the right way to do this, exactly?”

And that’s a fair question to ask — there isn’t always a firm “right”
way of doing things. In fact, as you likely already know, sometimes
best practices aren’t so great. Some of them can compromise
performance, readability and make things unproductive in the
long run.

In this article, I’ll describe 5 generally accepted development
practices that you can actually avoid when using React. Naturally,
I’ll explain why I consider the practice avoidable and suggest
alternative approaches that let you accomplish the same thing.

30

Optimizing React Right from the Start
The developers at React have put a lot of effort into making React
fast and new optimizations are added to the mix after each new
update. In my opinion, you shouldn’t spend time optimizing stuff until
you see actual performance hits.

Why?

It’s easier to scale React compared to other front-end platforms
because you don’t have to rewrite entire modules to make things
faster. The usual culprit that causes performance issues is the
reconciliation process that React uses to update the virtual DOM.

Let’s have a look at how React handles things under the hood.
On each render(), React generates a tree that’s composed of UI
elements —the leaf nodes being the actual DOM elements. When the
state or props get updated, React needs to generate a new tree with
minimal number changes and keep things predictable. Imagine you
have a tree that looks like this:

LOGROCKET.COM

31

Imagine that the application receives new data and the following
nodes need to be updated:

React usually ends up re-rendering the entire subtree instead of
rendering only the relevant nodes like this:

LOGROCKET.COM

32

When the state changes at top-order components, all the
components below it get re-rendered. That’s the default behavior
and it’s okay for a small-sized application. As the application
grows, you should consider measuring the actual performance
using Chrome Profiling Tools. The tool will give you precise details
about the time wasted on unwanted renders. If the numbers are
significant, you can then optimize the rendering time by adding a
shouldComponentUpdate hook into your component.

The hook gets triggered before the re-rendering process starts and
by default, it returns true:

When it returns true, React’s diff algorithm takes over and re-renders
the entire subtree. You can avoid that by adding comparison logic
into shouldComponentUpdate and updating the logic only when the
relevant props have changed.

LOGROCKET.COM

33

The component won’t update if any other props / state has changed
except color / count.

Apart from this, there are certain non-React optimization tricks that
developers usually miss, but they have an impact on the application’s
performance.

I’ve listed some of the avoidable habits and the solutions below:

Unoptimized images
 If you’re building on dynamic images, you need to consider your
options while dealing with images. Images with huge file sizes can
give the user an impression that the application is slow. Compress the
images before you push them into the server or use a dynamic image
manipulation solution instead. I personally like Cloudinary to optimize
react images because it has its own react library, but you could also
use Amazon S3 or Firebase instead.

Uncompressed build files
Gzipping build files (bundle.js) can reduce the file size by a good
amount. You will need to make modifications to the webserver
configuration. Webpack has a gzip compression plugin known as
compression-webpack-plugin. You can use this technique to generate
bundle.js.gz during build time.

LOGROCKET.COM

https://cloudinary.com/visualweb/display/IMMC/Image+Manipulation+Techniques
https://cloudinary.com/visualweb/display/IMMC/Image+Manipulation+Techniques
https://github.com/webpack-contrib/compression-webpack-plugin

34

Server-side rendering for SEO
Although Single Page applications are awesome, there are two issues
that are still attributed back to them.

1. When the application loads initially, there is no cache of JavaScript
in the browser. If the application is big, the time taken to initially
load the application will also be huge.

2. Since the application is rendered in the client side, the web
crawlers that search engines use won’t be able to index the
JavaScript generated content. The search engines will see your
application to be blank and then rank you poorly.

That’s where the server-side rendering technique comes in handy.
In SSR, the JavaScript content is rendered from the server initially.
After the initial render, the client-side script takes over and it works
like a normal SPA. The complexity and the cost involved in setting
up the traditional SSR is higher because you need to use a Node/
Express server.

There’s good news if you’re in it for the SEO benefit, Google indexes
and crawls the JavaScript content without any trouble. Google
actually started to crawl JavaScript material back in 2016 and the
algorithm works flawlessly right now.

LOGROCKET.COM

35

Here’s an excerpt from the Webmaster blog back in October 2015:

If you’re only using server-side rendering because you’re worried
about your Google Page Rank, then you don’t need to use SSR. It
used to be a thing in the past, but not anymore.

However, if you’re doing it to improve the initial render speed, then
you should try an easier implementation of SSR using a library like
Next.js. Next saves you time that you would otherwise spend on
setting up the Node/Express server.

Today, as long as you’re not blocking Googlebot from crawling
your JavaScript or CSS files, we are generally able to render and
understand your web pages like modern browsers. To reflect this
improvement, we recently updated our technical Webmaster
Guidelines to recommend against disallowing Googlebot from
crawling your site’s CSS or JS files.

LOGROCKET.COM

https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
http://googlewebmastercentral.blogspot.com/2014/05/understanding-web-pages-better.html
http://googlewebmastercentral.blogspot.com/2014/10/updating-our-technical-webmaster.html
http://googlewebmastercentral.blogspot.com/2014/10/updating-our-technical-webmaster.html

36

Inline styles & CSS imports
While working with React, I’ve personally tried different styling ideas
to find new ways to introduce styles into React components. The
traditional CSS-in-CSS approach that has been around for decades
works with React components. All your stylesheets would go into a
stylesheets directory and you can then import the required CSS into
your component.

However, when you’re working with components, stylesheets don’t
make sense anymore. While React encourages you to think of your
application in terms of components, stylesheets force you to think of
it at the document level.

Various other approaches are being practiced to merge the CSS and
the JS code into a single file. The Inline Style is probably the most
popular among them.

LOGROCKET.COM

37

You don’t have to import CSS anymore, but you’re sacrificing
readability and maintainability. Apart from that, Inline Styles don’t
support media queries, pseudo classes and pseudo elements and
style fallbacks. Sure, there are hacks that let you do some of them,
but it’s just not that convenient.

That’s where CSS-in-JSS comes in handy and Inline Styles are not
exactly CSS-in-JSS. The code below demonstrates the concept using
styled-components.

What the browser sees is something like this:

LOGROCKET.COM

38

A new <style> tag is added to the top of the DOM and unlike inline
styles, actual CSS styles are generated here. So, anything that works
in CSS works in styled components too. Furthermore, this technique
enhances CSS, improves readability and fits into the component
architecture. With the styled-components lib, you also get SASS
support that’s been bundled into the lib.

Nested ternary operator
Ternary operators are popular in React. It’s my go-to operator for
creating conditional statements and it works great inside the render()
method. For instance, they help you to render elements inline an in
the example below, I’ve used it to display the login status.

However, when you nest the ternary operators over and over, they
can become ugly and hard to read.

LOGROCKET.COM

As you can see, the shorthand notations are more compact, but they
make the code appear messy. Now image if you had a dozen or more
nested ternaries in your structure. And it happens a lot often than you
think. Once you start with the conditional operators, it’s easy to keep
on nesting it and finally, you reach a point where you decide that you
need a better technique to handle conditional rendering.

But the good thing is that you have many alternatives that you can
choose from. You can use a babel plugin like JSX Control Statements
that extends JSX to include components for conditional statements
and loops.

There’s another popular technique called iify (IIFE — Immediately-
invoked function expressions). It’s an anonymous function that is
invoked immediately after they are defined.

LOGROCKET.COM

40

We’ve wrapped the function inside a pair of parentheses to make the
anonymous function a function expression. This pattern is popular in
JavaScript for many reasons. But in React, we can place all the if /
else statements inside the function and return whatever that we want
to render.

Here is an example that demonstrates how we’re going to use
IFFE in React.

IIFE’s can have an impact on performance, but it won’t be anything
significant in most cases. There are more methods to run conditional
statements in React and we’ve covered that in 8 methods for
conditional rendering in React.

LOGROCKET.COM

https://blog.logrocket.com/conditional-rendering-in-react-c6b0e5af381e
https://blog.logrocket.com/conditional-rendering-in-react-c6b0e5af381e

41

Closures in React
Closures are inner functions that have access to the outer function’s
variables and parameters. Closures are everywhere in JavaScript and
you’ve been probably using it even if you’ve not realized yet.

But when you are using closures inside the render() method, it’s
actually bad. Every time the SayHi component is rendered, a new
anonymous function is created and passed to Button component.
Although the props haven’t changed, <Button /> will be forced to
re-render. As previously mentioned, wasted renders can have
a direct impact on performance.

Instead, replace the closures with a class method. Class methods
are more readable and easy to debug.

LOGROCKET.COM

42

When a platform grows, new patterns emerge each day. Some
patterns help you improve your overall workflow whereas a few
others have significant side effects. When the side effects impact your
application’s performance or compromise readability, it’s probably
a better idea to look for alternatives. In this post, I’ve covered
some of the practices in React that you can avoid because of their
shortcomings.

LOGROCKET.COM

Modern Component Reusability:
Render Props in React

By Jonathan Harrell • UI/UX Designer & Front-End Developer

One of the issues all front-end developers face
is how to make UI components reusable.

How do we craft components in such a way that satisfies the narrow
use case that is clear to us now, while also making them reusable
enough to work in a variety of circumstances?

Let’s say we are building an autocomplete component:

LOGROCKET.COM

45

Take a look at the initial React component code:

In this component, we have some logic that controls the core search
behavior, but we also specify how the input and search results will be
rendered. In this instance, we render a div that serves as a dropdown
container and an unordered list containing
a list item for each result within it.

LOGROCKET.COM

46

Think about how you would reuse this component. Sure, you could
use this very same component if you want to reproduce exactly the
same behavioral and visual result. But what if you want to reuse the
same behavior, but visualize the component slightly differently?
What if you want to reuse the core search behavior but add a few
modifications for a slightly different use case?

Imagine that instead of a dropdown containing the search results,
you want a tag-like list of search results that always display:

At their core, the functionality of these two components is very
similar: type into an input to filter a list.

This is a perfect use case for some relatively new tools that modern
JavaScript frameworks now provide. These are render props. They
provide a way to separate the behavior of a component from its
presentation.

LOGROCKET.COM

Render Props in React
First, let’s look at how we would restructure our autocomplete
component using render props in React. We will now have two
components — one for our Autocomplete component and one
for a core SearchSelect component.

Let’s look at the SearchSelect component first:

This is a renderless component (one that doesn’t render any markup
of its own). Rather, it returns the result of a special prop called a
render prop. This render prop accepts an object, into which you can
pass any data that you would like the parent component to have
access to.

LOGROCKET.COM

Think of this as the opposite of normal props. Usually, props are
passed down from parent to child. In the case of render props,
these are returned from the child so the parent can access them.

Our SearchSelect component is handling the lowest level
functionality — filtering a list of options based on a query string.
It is then using the special render prop to render an element.
In the parent, we pass a function to the render prop of the
SearchSelect component. This function returns a React element,
which we can hydrate with state and behavior from the SearchSelect
component itself. Basically, this means we are able to access data
from the child component in the parent.

LOGROCKET.COM

49

All this means that we can write whatever markup we want, as long
as we properly hydrate it with the data and behavior exposed by the
SearchSelect component.

Also, note how we are passing the method for filtering our list in as a
prop. This will allow us to change the way our list of options is filtered,
while still using the SearchSelect component.

Let’s look at how we would implement our tag-like list component.
We use the same SearchSelect core component and just change the
markup rendered by the render prop:

LOGROCKET.COM

Other uses for render props
Creating reusable interface components isn’t the only use for render
props and scoped slots. Here are some other ideas for how you can
use them to encapsulate reusable behavior in a component that can
then be exposed to its parent.

Data provider components: You can use render props/scoped slots
to create a component that handles asynchronously fetching data
and exposing that data to its parent. This allows you to hide the logic
for hitting an endpoint, getting the result and handling possible
errors, as well as displaying a loading state to users while the data
fetch is in progress. Here’s what the base component could look like:

LOGROCKET.COM

51

It accepts a URL as a prop and handles the actual fetching logic.
Then, we use it in a parent component:

LOGROCKET.COM

52

Observers (resize, intersection, etc.): You can also use render props/
scoped slots to create a component that acts as a wrapper around
resize or intersection observers. This component can simply expose
the current size or intersection point of an element to a parent
component. You can then perform whatever logic you need based
on that data in the parent, preserving a nice separation of concerns.
Here is a base component that observes its own size and exposes its
height and width to its parent:

LOGROCKET.COM

53

We are using the Element Resize Detector library to listen to changes
in our element size, and a React ref to get a reference to the actual
DOM node.

We can then use this component quite easily in our app:

LOGROCKET.COM

https://github.com/wnr/element-resize-detector

54

The key to successfully creating reusable components using both
render props and scoped slots is being able to correctly separate
behavior from presentation. Each time you create a new UI
component, think “What is the core behavior of this component?
Can I use this anywhere else?”

Having a core set of renderless components that use render props
can help you cut down on code duplication in your app and think
more carefully about your core interface behaviors.

LOGROCKET.COM

LOGROCKET.COM

